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ABSTRACT: The key schedule algorithm of some ciphers is examined to evaluate their strength. The strength is evaluated 

through statistical analysis. Three data generation methods are used to determine the correlation and independence of sub-

keys generated by a key schedule algorithm. Four basic statistical tests are used to evaluate these properties of key schedule. 

The results showed that the weak and strong key schedule can be distinguished by the help of these statistical tests. 

 
Keywords: Auto-correlation Test, Independence Method, Key Schedule, Poker Test, Randomness, Sub-keys. 

 

1. INTRODUCTION 

The field of information security (IS) has grown and evolved 

significantly in recent years. IS is the field of defending 

information from unauthorized access, disclosure, use, 

modification, disruption, inspection, recording or destruction. 

Collected information is processed and stored on electronic 

computers and transmitted across networks to other 

computers. To protect the information at rest or in transit, the 

cryptographic algorithms are used. There are three types of 

cryptographic algorithms on the basis of the number of keys 

i.e. Secret Key Cryptosystem/Symmetric key Cryptosystem 

in which a single key is used for both encryption and 

decryption, Public Key Cryptosystem or Asymmetric 

Cryptosystem which used two keys, one for encryption 

(public key) and other for decryption (private key) and 

Hash/One-way function which performed mathematical 

transformation to convert a variable length input into a fixed 

length output and to be used as finger prints of input data.. 

The security of asymmetric cryptosystem lies on two 

parameters: the strength of algorithm and secrecy of the key. 

In practice cipher algorithms are publically known so the 

security of entire cryptosystem depends on the concealment 

of the secret or primary key. The key length should be long 

enough that there is no better way to break it except brute-

force attack. Now a days, at least 128-bit key is 

recommended to be used for symmetric algorithms [1]. 

In a cipher algorithm a secret key is used to create the 

number of round keys (sub-keys) according to specified key 

scheduling algorithm. Each sub-key in a round of the 

encryption algorithm is mixed with input data which hide the 

correlation between input and output of the round.  

The design of a good key schedule is a crucial part of cipher 

design. If the key schedule algorithm is not strong enough 

then the whole cryptosystem can be compromised by 

recovering the secret key due to some relationship between 

sub-keys [2]. In past, simple rotations or permutations are 

employed in the key schedule algorithm e.g. IDEA DES, 

TEA etc. use only simple permutations to generate the sub-

keys from the secret key. After the development of 

cryptanalysis techniques the designers began to use the non-

linear components in the key schedule algorithm. These 

components were used to avoid different attacks due to weak 

key schedule [3]. But still no clear criteria are developed to 

test the strength of key schedule algorithm. A weak key 

schedule generates nonrandom and related sub keys which 

make even a strong cipher algorithm vulnerable to attacks. So 

there is a need to define criteria for designing the strong key 

schedule. 

The key schedule algorithm of Rijndeal [4] used the mixture 

of linear and non-linear transformations and generates 11 

sub-keys of 128-bit length. The key schedule is based on the 

32-bit words. Initial four words are generated from the master 

key. The remaining 40 words are generated by the iterative 

process.  Successive groups of four 32-bit words are 

concatenated to produce the 128-bit sub-keys. The functions 

that are used in the key schedule algorithm are SubByte, Rotl 

(rotate left) and Rcon (round constant). Subbyte takes four 

bytes as an input and produces the four output bytes. Rotl is 

the byte rotation of the 32-bit word and Rcon are predefined 

32-bit constants used to mix with first word of every 

successive group. 

Ross Anderson et. al [5] explained the key schedule 

algorithm of the serpent. Serpent uses the 256-bit key to 

generate the 132 words of 32-bit length. User can enter the 

variable length key but the key schedule algorithm initially 

expand it to the 256-bit and then process it to calculate the 

128-bit sub-keys. Affine recurrence and golden ratio is used 

in the key schedule algorithm with the round index to 

eliminate the weak keys and related keys.  Finally s-boxes in 

bit slice mode are used to generate sub-keys. 

Bruce Shenier et. al explained that Twofish key schedule 

algorithm [6] can pre-compute the sub-keys at maximum 

speed, or on-the-fly. Minimum memory is required and it is 

also suitable for dedicated hardware applications. Twofish 

utilize the encryption functions (MDS matrix and 8 s-boxes) 

in the key schedule algorithm which allow the generation of 

more secure sub-keys.  

The cipher MARS accepts the variable key lengths [7]. 

MARS uses the s-box of order 9×32 in the key schedule 

algorithm. Initially, key schedule algorithm expands the input 

key then passes it through the s-box. 40 words of 32-bits are 

calculated by the key schedule algorithm. MARS employ the 

left rotation function and bit masking as a linear function in 

the key schedule algorithm. 

RC6 key schedule algorithm uses the two magic constant in 

the key schedule algorithm [8] whereas, IDEA used simple 

permutation in the key schedule algorithm [9]. In IDEA, the 

block length is 64-bit and master key length is 128-bit. First 

eight sub keys are generated by utilizing the secret key. For 

second round the secret key is left shifted by 25-bits and next 

eight sub-keys are generated. This process will continue until 
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all sub-keys are generated for each of the eight rounds of the 

encryption algorithm.  

Statistical tests can be used to test the key schedule 

algorithms strength. In this paper randomness testing is 

carried out on the key schedule algorithms that evaluate the 

randomness of the sub keys.  When results showed fair 

randomness in sub keys then the key schedule is considered 

to be immune to related key and dependence between sub 

keys attacks. The rest of the paper is organized as: section II 

described the statistical tests for key schedule algorithm. 

Selected ciphers are listed in section III and results and 

analysis are presented in section IV and finally paper is 

closed with concluding remarks. 

2. STATISTICAL TESTS 

Block cipher randomness testing does not involve the key 

schedule algorithm testing which is an important part of any 

block cipher algorithm. Key schedule algorithm directly 

affects the security of the whole block cipher. For example, 

an attacker may construct a way to attack the block cipher 

algorithm by taking advantage of the weakness of key 

scheduling algorithm [10].  

A well–designed Key-scheduling algorithm may ensure the 

statistical independence of each sub-key. In practice sub key 

is generated by inputting the previous sub key in the key 

schedule algorithm. So, by the design of a key-scheduling 

algorithm, it is impossible to make all sub-keys statistical 

independent and uncorrelated to each other [10]. However, it 

can be strived to make them as independent and uncorrelated 

as possible. Some percentage criteria for the statistical tests 

can be defined to evaluate the dependency and correlation 

between sub-keys. 

2.1. Data Generation 

To perform the evaluation task, key schedule algorithm can 

be expressed in 4-elements model. The model can be defined 

as  

          (1) 

Where Fks is key scheduling algorithm, MK is the secret key 

of length n-bits, m is the length of sub keys, r is the number 

of generated sub-keys and SK is a sub key set consisting of r-

generated sub keys. Sub key set can be expressed as: 

             (2) 

Each  is of m-bit length and  is  byte 

of , where  

To test the strength of , sequence is generated by using 

the sub-key set. There are three methods to generate the 

sequence that is discussed below [10]. In all three methods 

the process is described to generate a one sequence (Bseq) by 

inputting the one secret key in the . A set of 500 random 

vectors are generated by a PRNG named Blum-Blum Shub 

(BBS). These random vectors are used as secret keys in the 

 and 500 sets of sub-keys are generated by each method 

which is illustrated in Fig. 1.  

 

 
Fig. 1: Sub-Key Generation Process 

 

From the generated 500 sets of sub-keys 500 sequences are 

generated for each method.  

2.1.1. Sub-key Independence Method 

To evaluate the dependency and correlation between two sub 

keys, all possible combinations of two sub-keys from SK set 

are XORed together. For example,  is XORed with 

 then  with   

and so on. From  and  a bit string (BS) is generated as  

                                                                 (3) 

Bit strings results from the XOR of all combinations of sub 

keys are concatenated together to get a bit sequence (Bseq). 

This concatenated Bseq is then tested for randomness.  

        

 

                                   (4) 

Total number of bits in Eq. (4) is 

Sequence length=                                (5)                                  

Where ‘C’ denotes the combination of all sub-keys. 

2.1.2. Byte level Independence Method 

To reveal the correlation between two bytes of sub keys, the 

sub-keys are divided into 8-bit block. In this method XOR is 

performed between all possible combinations of bytes of sub 

keys. The required sequence will be generated as: 

       

 

                                            (6) 

where 

                                                                       (7)  

 
Total number of bits in Eq. (6) is 

Sequence length =                 (8)  

Here, denote the number of bytes in sub key  

. 

2.1.3. Bit level Independence Method 

To express the relationship between every bit of  and , 

XOR the all possible combinations of bits of  and . 

Generated data from this method can sufficiently reveal the 

relationship between every bit of different sub keys. Bit 

strings results from the XOR operation are concatenated 

together for the randomness testing. The required sequence 

is: 

          

              (9) 
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Where  

       

                                                    (10) 

Here,  

XOR the k
th

 byte of  with the all bits of .  

Total number of bits in Eq. (9) is 

Sequence length =                    (11) 

2.2. Randomness Testing 
Various statistical tests can be applied upon a sequence to test 

the randomness property, of that sequence. Statistical tests 

are used to test a null hypothesis (H0). In this paper the null 

hypothesis H0 is: The sequence being tested is random and 

alternative hypothesis Ha is: The sequence is not random [12].  

Four local randomness tests are selected to test the null 

hypothesis i.e. frequency, runs, poker and autocorrelation 

tests. These basic tests sufficiently test the randomness 

property of a bit sequence and can be applied on small 

sequences. Other NIST tests can also be used to test the 

sequence randomness but care must also be taken about 

sequence length. Most of the NIST tests are applicable on the 

sequence of length 10
6 

bit. For small sequences these NIST 

tests did not follow the prescribed distributions and shows 

misleading results.  

The purpose of selected four basic tests is described below.  

2.2.1. Frequency test 
This test checked whether the number of ‘0’ or ‘1’ in the 

sequence meet the criterion of random sequence i.e. number 

of ‘0’ and ‘1’ are equal or not [11,13]. 

2.2.2. Runs test 
  The purpose of runs test is to test whether the behavior of 

changes in a sequence meet the criterion of random sequence 

[11, 13]. 

2.2.3. Poker test 
Poker test checks the uniformity distribution of p-bits pattern 

in the whole sequence i.e. the number of times the p-bits 

block appears in the entire sequence should be same [11]. 

2.2.4. Autocorrelation test 
The purpose of autocorrelation test is to test the degree of 

dependence between a sequence and its shifted sequence. 

Shifted value is denoted by d [11].  

In the randomness testing, if any sequence fails the frequency 

test then there is no need to apply the remaining three tests. 

Since the randomness testing is the probabilistic approach, 

therefore 500 sequences are generated to draw conclusion on 

the independence among sub-keys [12]. Here, random secret 

keys are used for testing process; hence this can also be 

extended by included non-random secret keys.  

3. SELECTED KEY SCHEDULE ALGORITHMS 

Six block cipher are selected for analysis purpose. The key 

schedule algorithms of selected ciphers are implemented in 

software. The selected block ciphers are AES, MARS, 

Serpent, RC6, Twofish and IDEA. The key schedule 

algorithm of all block ciphers uses 128-bit secret key expects 

Serpent that take 256-bit secret key. 

Sub-key length of all key schedule algorithms is 128-bit. 

AES, MARS, Serpent and TwoFish used linear and non-

linear functions in key schedule whereas RC6 uses constants 

and linear functions in key schedule. The cipher IDEA uses 

only cyclic shift of secret key to generate the sub-keys. Each 

key schedule algorithm is tested for the independency and 

correlation property among sub-keys by applying above 

mentioned four tests. 

4. TEST PARAMETERS 
For each key schedule algorithm Fks, 11(r = 11) sub-keys are 

generated for testing. For IDEA, only seven (r = 7) sub-keys 

are generated since IDEA uses 8 sub keys including secret 

key in the encryption algorithm. For each key schedule 

algorithm m, length of sub-key is taken as 128-bit. Sequence 

length of AES, MARS, Serpent, RC6 and TwoFish key 

schedule algorithms generated by the sub-key method, byte 

level method and bit level method, are 7040 bit, 112640 bit 

and 901120 bit respectively. For IDEA, these sequences 

length are 2688 bit, 43008 bit and 344064 bit. 

500 sequences are generated by each of the three methods. To 

generate 500 sequences a random set of 500 secret keys is 

generated from the pseudo random number generator BBS. 

Testing process can also be extended for the non-random 

keys to test sub keys randomness. 

To test the null hypothesis of randomness, level of 

significance α is chosen as 0.10. Other values of α can also be 

chosen depending upon how much dependency and 

correlation one can tolerate among the sub keys. α = 0.10 

indicates that one would expect 10 out of 100 sequences may 

not pass the test this value of α. In this case, 50 out of 500 

sequences may not pass the tests. The threshold value for 

passing test will be 90%. 

5. RESULTS AND DISCUSSION 

In this research work, defined passing criteria for the 

randomness testing of sequences are 90%. But as mentioned 

in the section II that it is impossible to make all sub keys 

independent hence the results near to 90% shall also be 

considered satisfactory. If any key schedule algorithm shows 

result far away from passing criteria of randomness testing, it 

will be concluded that the key schedule algorithm is 

vulnerable to key-dependent attacks.  

500 sequences are generated in each method for the selected 

key schedule algorithms of six ciphers. In the following 

section the results are analyzed in detail. 

5.1. Sub key Independent Method 

Selected 500 random keys are entered as a secret key to the 

key schedule algorithms. The sub keys are generated and the 

sequences to test the independence between sub-keys are 

generated. Four randomness tests are performed on the 

generated sequences and the results are presented in Table 1. 

The results of Frequency test for the key schedule of Serpent, 

RC6 and TwoFish are above 90% which shows the balance 

of zero and one in the generated sequence. Remaining three 

test results of these key schedules also satisfy the defined 

passing criteria. These results indicate that the sub keys 

generated by the key schedule of Serpent, RC6 and TwoFish 

are independent and uncorrelated at sub key level. 

 



1638 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(3),1835-1639,2015 

May-June 

Table 1: Results by Sub-Key Independent Method 

Cipher 
Frequency 

Test 
Runs Test 

Poker 

Test 

Auto-

correlation 

test 

AES-128 76.6% 92.40% 99.6% 90.6% 

MARS 48.4% 78% 98% 86% 

Serpent 95.4% 97% 100% 94.2% 

RC6 93.8% 92.4% 100% 92.8% 

TwoFish 96.2% 98.6% 100% 94.8% 

IDEA 45% 100% 97.4% 43.2% 

Frequency test percentage of AES key schedule is 76.6% 

which is far away from the passing criteria and point out the 

unbalance distribution of zero and one in the sequence. Other 

three test results for the AES fall into the passing range but 

since frequency test is failed hence it is concluded that the 

sub keys of AES are correlated. The result of frequency tests 

for key schedule algorithm of IDEA is 45% which showed 

the unbalanceness of zero and one in the sequences. 

Autocorrelation test result of IDEA is 43.2% which 

demonstrate the correlation between the sequences and their 

shifted versions. key schedule of IDEA passes the runs and 

poker test with high percentage since frequency and 

autocorrelation tests do not fall into the passing range, 

therefore, it is indicated that key schedule of IDEA does not 

pass the independence criteria. MARS key schedule 

algorithm also does not pass the frequency and runs tests. It 

indicates the dependency and correlation among the 

generated sub keys of MARS. The results showed that the 

TwoFish key schedule algorithm is best among the 6 key 

schedule algorithms. 

5.2. Byte level Independence Method 
Sub-keys are generated by inputting the 500 random keys 

into the key schedule algorithms. To test the independence 

between sub-keys at byte level, the sequences are generated 

by the byte level independence method described in section 

II. The statistical tests are performed on the generated 

sequences to test the randomness. The results are given in 

Table 2. 

Table 2: Results by Byte Level Independent Method 

Cipher 
Frequency 

Test 

Runs 

Test 

Poker 

Test 

Auto-

correlation 

test 

AES-128 90.6% 95.20% 98% 90.6% 

MARS 74% 85.60% 98% 74% 

Serpent 95% 98.40% 99.8% 95% 

RC6 97% 97.8% 100% 97% 

TwoFish 97.6% 98.2% 100% 97.6% 

IDEA 0% - - 0% 

 

AES, Serpent, RC6 and TwoFish key schedules results 

showed that percentage of passed sequences for all tests is 

above 90%.  This high percentage indicates that the bytes of 

sub-keys generated by the AES, Serpent, RC6 and TwoFish 

key schedule algorithms are statistically independent and 

uncorrelated. The result of key schedule algorithm of MARS 

described that it passes frequency test with percentage of 74. 

The 74% indicate that distribution of zero and one is not 

uniform. Other three test results of MARS key schedule 

algorithm are 85.60%, 98% and 89.9% that are near or above 

the 90%. However, MARS do not pass the frequency test, 

hence, bytes of sub keys are somewhat correlated. Since key 

schedule algorithm of IDEA uses only the permutation 

function it showed the poor results for the frequency test. 

Since frequency test showed 0% results therefore there is no 

need to apply the other tests of randomness. Results of IDEA 

show the strong correlation between the bytes of the sub-

keys.  

5.3. Bit level Independence Method 
To test the independence between the sub-keys at bit level, 

data is generated by using the 500 random keys. This method 

is stronger than the remaining two methods since it checks 

the correlation between sub keys at bit level. Each bit of the 

sub keys is tested for the correlation with the all bits of other 

sub keys. If any key schedule algorithm passes the bit level 

correlation test then the key schedule is suppose to be 

immune to the key-dependent attacks. This method clearly 

distinguishes between the weak and strong key schedule 

algorithm. The test results for this method are given in Table 

3.  

TwoFish key schedule algorithm showed good results as 

compared to the rest of the algorithms. TwoFish passed all 

the randomness tests with high percentage. TwoFish uses 

strong components (MDS and s-box) in the key schedule 

algorithm which make it a strong key schedule algorithm. 

AES key schedule also showed good independency among 

sub keys at bit level.  Only autocorrelation test percentage is 

88.4%, however it is very close to 90%. It can be concluded 

that the sub keys of AES are satisfactorily statistically 

independent. Serpent key schedule algorithm also generates 

the independent sub keys as indicated by the results.  

Table 3: Results by bit level independence Method 

Cipher 
Frequency 

Test 

Runs 

Test 

Poker 

Test 

Auto-

correlation 

test 

AES-128 90.25% 92% 95.8% 88.4% 

MARS 83% 87% 97% 91.2% 

Serpent 95.6% 90.6% 100% 94.2% 

RC6 77.4% 83% 91.8% 97.2% 

TwoFish 93% 95.60% 99.6% 93.6% 

IDEA 0% - - - 

Frequency test of MARS key schedule algorithm is 83% and 

87% for the runs test. But the poker and autocorrelation test 

of MARS satisfied the threshold level. 83% frequency test of 

MARS demonstrates that there is some dependency between 

the sub keys. RC6 key schedule algorithm also did not pass 

the frequency and run test which described the dependency at 

bit level among generated sub keys. IDEA key schedule 

algorithm showed 0% results for frequency test which 

indicate that all 500 sequences did not pass the randomness 

tests. The poor results of IDEA for all tests indicate high 

dependency of sub keys at bit level. 

6. CONCLUSION 

Key schedule algorithm is an important part of any block 

cipher algorithm and its strength directly affects the security 

of the cipher. In literature, there are no defined criteria to test 

the strength of key schedule algorithm. In this paper, three 

different data generation methods are described to test the 

independence and relationship among the sub keys generated 



Sci.Int.(Lahore),27(3),1835-1839,2015 ISSN 1013-5316; CODEN: SINTE 8 1639 

May-June 

by the key schedule algorithm. Method 1 checks the 

dependency between sub keys at the whole sub key level.  

Method 2 checks the correlation between the bytes of sub 

keys and Method 3 reveals the correlation among the bits of 

sub keys. A weak key schedule algorithm may pass the first 

method but second and third method pointed out all the 

weaknesses of the key schedule algorithm. Frequency, runs, 

poker and autocorrelation tests are used to test the 

randomness of the generated sequences. The results have 

shown that the key schedule algorithms which use only linear 

permutation do not pass the statistical tests e.g. IDEA. During 

design stage these test must also be performed to test the 

dependence and correlation between sub-keys so that many 

attacks can be mitigated which take the advantage of 

dependency or linear relationship between sub-keys and 

break the whole cipher.      
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