
Sci.Int.(Lahore),27(3),1835-1839,2015 ISSN 1013-5316; CODEN: SINTE 8 1635

May-June

STATISTICAL ANALYSIS OF KEY SCHEDULE ALGORITHMS OF DIFFERENT
BLOCK CIPHERS

Shazia Afzal
1
, Umer Waqas

1
, Mubeen Akhtar Mir

2
, Muhammad Yousaf

1 *

1 Riphah Institute of Systems Engineering, Riphah International University, Islamabad, Pakistan
2 Pakistan Institute of Engineering and Applied Science, Islamabad, Pakistan

* Corresponding Author Email: muhammad.yousaf@riu.edu.pk

ABSTRACT: The key schedule algorithm of some ciphers is examined to evaluate their strength. The strength is evaluated

through statistical analysis. Three data generation methods are used to determine the correlation and independence of sub-

keys generated by a key schedule algorithm. Four basic statistical tests are used to evaluate these properties of key schedule.

The results showed that the weak and strong key schedule can be distinguished by the help of these statistical tests.

Keywords: Auto-correlation Test, Independence Method, Key Schedule, Poker Test, Randomness, Sub-keys.

1. INTRODUCTION

The field of information security (IS) has grown and evolved

significantly in recent years. IS is the field of defending

information from unauthorized access, disclosure, use,

modification, disruption, inspection, recording or destruction.

Collected information is processed and stored on electronic

computers and transmitted across networks to other

computers. To protect the information at rest or in transit, the

cryptographic algorithms are used. There are three types of

cryptographic algorithms on the basis of the number of keys

i.e. Secret Key Cryptosystem/Symmetric key Cryptosystem

in which a single key is used for both encryption and

decryption, Public Key Cryptosystem or Asymmetric

Cryptosystem which used two keys, one for encryption

(public key) and other for decryption (private key) and

Hash/One-way function which performed mathematical

transformation to convert a variable length input into a fixed

length output and to be used as finger prints of input data..

The security of asymmetric cryptosystem lies on two

parameters: the strength of algorithm and secrecy of the key.

In practice cipher algorithms are publically known so the

security of entire cryptosystem depends on the concealment

of the secret or primary key. The key length should be long

enough that there is no better way to break it except brute-

force attack. Now a days, at least 128-bit key is

recommended to be used for symmetric algorithms [1].

In a cipher algorithm a secret key is used to create the

number of round keys (sub-keys) according to specified key

scheduling algorithm. Each sub-key in a round of the

encryption algorithm is mixed with input data which hide the

correlation between input and output of the round.

The design of a good key schedule is a crucial part of cipher

design. If the key schedule algorithm is not strong enough

then the whole cryptosystem can be compromised by

recovering the secret key due to some relationship between

sub-keys [2]. In past, simple rotations or permutations are

employed in the key schedule algorithm e.g. IDEA DES,

TEA etc. use only simple permutations to generate the sub-

keys from the secret key. After the development of

cryptanalysis techniques the designers began to use the non-

linear components in the key schedule algorithm. These

components were used to avoid different attacks due to weak

key schedule [3]. But still no clear criteria are developed to

test the strength of key schedule algorithm. A weak key

schedule generates nonrandom and related sub keys which

make even a strong cipher algorithm vulnerable to attacks. So

there is a need to define criteria for designing the strong key

schedule.

The key schedule algorithm of Rijndeal [4] used the mixture

of linear and non-linear transformations and generates 11

sub-keys of 128-bit length. The key schedule is based on the

32-bit words. Initial four words are generated from the master

key. The remaining 40 words are generated by the iterative

process. Successive groups of four 32-bit words are

concatenated to produce the 128-bit sub-keys. The functions

that are used in the key schedule algorithm are SubByte, Rotl

(rotate left) and Rcon (round constant). Subbyte takes four

bytes as an input and produces the four output bytes. Rotl is

the byte rotation of the 32-bit word and Rcon are predefined

32-bit constants used to mix with first word of every

successive group.

Ross Anderson et. al [5] explained the key schedule

algorithm of the serpent. Serpent uses the 256-bit key to

generate the 132 words of 32-bit length. User can enter the

variable length key but the key schedule algorithm initially

expand it to the 256-bit and then process it to calculate the

128-bit sub-keys. Affine recurrence and golden ratio is used

in the key schedule algorithm with the round index to

eliminate the weak keys and related keys. Finally s-boxes in

bit slice mode are used to generate sub-keys.

Bruce Shenier et. al explained that Twofish key schedule

algorithm [6] can pre-compute the sub-keys at maximum

speed, or on-the-fly. Minimum memory is required and it is

also suitable for dedicated hardware applications. Twofish

utilize the encryption functions (MDS matrix and 8 s-boxes)

in the key schedule algorithm which allow the generation of

more secure sub-keys.

The cipher MARS accepts the variable key lengths [7].

MARS uses the s-box of order 9×32 in the key schedule

algorithm. Initially, key schedule algorithm expands the input

key then passes it through the s-box. 40 words of 32-bits are

calculated by the key schedule algorithm. MARS employ the

left rotation function and bit masking as a linear function in

the key schedule algorithm.

RC6 key schedule algorithm uses the two magic constant in

the key schedule algorithm [8] whereas, IDEA used simple

permutation in the key schedule algorithm [9]. In IDEA, the

block length is 64-bit and master key length is 128-bit. First

eight sub keys are generated by utilizing the secret key. For

second round the secret key is left shifted by 25-bits and next

eight sub-keys are generated. This process will continue until

1636 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(3),1835-1639,2015

May-June

all sub-keys are generated for each of the eight rounds of the

encryption algorithm.

Statistical tests can be used to test the key schedule

algorithms strength. In this paper randomness testing is

carried out on the key schedule algorithms that evaluate the

randomness of the sub keys. When results showed fair

randomness in sub keys then the key schedule is considered

to be immune to related key and dependence between sub

keys attacks. The rest of the paper is organized as: section II

described the statistical tests for key schedule algorithm.

Selected ciphers are listed in section III and results and

analysis are presented in section IV and finally paper is

closed with concluding remarks.

2. STATISTICAL TESTS

Block cipher randomness testing does not involve the key

schedule algorithm testing which is an important part of any

block cipher algorithm. Key schedule algorithm directly

affects the security of the whole block cipher. For example,

an attacker may construct a way to attack the block cipher

algorithm by taking advantage of the weakness of key

scheduling algorithm [10].

A well–designed Key-scheduling algorithm may ensure the

statistical independence of each sub-key. In practice sub key

is generated by inputting the previous sub key in the key

schedule algorithm. So, by the design of a key-scheduling

algorithm, it is impossible to make all sub-keys statistical

independent and uncorrelated to each other [10]. However, it

can be strived to make them as independent and uncorrelated

as possible. Some percentage criteria for the statistical tests

can be defined to evaluate the dependency and correlation

between sub-keys.

2.1. Data Generation

To perform the evaluation task, key schedule algorithm can

be expressed in 4-elements model. The model can be defined

as

 (1)

Where Fks is key scheduling algorithm, MK is the secret key

of length n-bits, m is the length of sub keys, r is the number

of generated sub-keys and SK is a sub key set consisting of r-

generated sub keys. Sub key set can be expressed as:

 (2)

Each is of m-bit length and is byte

of , where

To test the strength of , sequence is generated by using

the sub-key set. There are three methods to generate the

sequence that is discussed below [10]. In all three methods

the process is described to generate a one sequence (Bseq) by

inputting the one secret key in the . A set of 500 random

vectors are generated by a PRNG named Blum-Blum Shub

(BBS). These random vectors are used as secret keys in the

 and 500 sets of sub-keys are generated by each method

which is illustrated in Fig. 1.

Fig. 1: Sub-Key Generation Process

From the generated 500 sets of sub-keys 500 sequences are

generated for each method.

2.1.1. Sub-key Independence Method

To evaluate the dependency and correlation between two sub

keys, all possible combinations of two sub-keys from SK set

are XORed together. For example, is XORed with

 then with

and so on. From and a bit string (BS) is generated as

 (3)

Bit strings results from the XOR of all combinations of sub

keys are concatenated together to get a bit sequence (Bseq).

This concatenated Bseq is then tested for randomness.

 (4)

Total number of bits in Eq. (4) is

Sequence length= (5)

Where ‘C’ denotes the combination of all sub-keys.

2.1.2. Byte level Independence Method

To reveal the correlation between two bytes of sub keys, the

sub-keys are divided into 8-bit block. In this method XOR is

performed between all possible combinations of bytes of sub

keys. The required sequence will be generated as:

 (6)

where

 (7)

Total number of bits in Eq. (6) is

Sequence length = (8)

Here, denote the number of bytes in sub key

.

2.1.3. Bit level Independence Method

To express the relationship between every bit of and ,

XOR the all possible combinations of bits of and .

Generated data from this method can sufficiently reveal the

relationship between every bit of different sub keys. Bit

strings results from the XOR operation are concatenated

together for the randomness testing. The required sequence

is:

 (9)

Sci.Int.(Lahore),27(3),1835-1839,2015 ISSN 1013-5316; CODEN: SINTE 8 1637

May-June

Where

 (10)

Here,

XOR the k
th

 byte of with the all bits of .

Total number of bits in Eq. (9) is

Sequence length = (11)

2.2. Randomness Testing
Various statistical tests can be applied upon a sequence to test

the randomness property, of that sequence. Statistical tests

are used to test a null hypothesis (H0). In this paper the null

hypothesis H0 is: The sequence being tested is random and

alternative hypothesis Ha is: The sequence is not random [12].

Four local randomness tests are selected to test the null

hypothesis i.e. frequency, runs, poker and autocorrelation

tests. These basic tests sufficiently test the randomness

property of a bit sequence and can be applied on small

sequences. Other NIST tests can also be used to test the

sequence randomness but care must also be taken about

sequence length. Most of the NIST tests are applicable on the

sequence of length 10
6

bit. For small sequences these NIST

tests did not follow the prescribed distributions and shows

misleading results.

The purpose of selected four basic tests is described below.

2.2.1. Frequency test
This test checked whether the number of ‘0’ or ‘1’ in the

sequence meet the criterion of random sequence i.e. number

of ‘0’ and ‘1’ are equal or not [11,13].

2.2.2. Runs test
 The purpose of runs test is to test whether the behavior of

changes in a sequence meet the criterion of random sequence

[11, 13].

2.2.3. Poker test
Poker test checks the uniformity distribution of p-bits pattern

in the whole sequence i.e. the number of times the p-bits

block appears in the entire sequence should be same [11].

2.2.4. Autocorrelation test
The purpose of autocorrelation test is to test the degree of

dependence between a sequence and its shifted sequence.

Shifted value is denoted by d [11].

In the randomness testing, if any sequence fails the frequency

test then there is no need to apply the remaining three tests.

Since the randomness testing is the probabilistic approach,

therefore 500 sequences are generated to draw conclusion on

the independence among sub-keys [12]. Here, random secret

keys are used for testing process; hence this can also be

extended by included non-random secret keys.

3. SELECTED KEY SCHEDULE ALGORITHMS

Six block cipher are selected for analysis purpose. The key

schedule algorithms of selected ciphers are implemented in

software. The selected block ciphers are AES, MARS,

Serpent, RC6, Twofish and IDEA. The key schedule

algorithm of all block ciphers uses 128-bit secret key expects

Serpent that take 256-bit secret key.

Sub-key length of all key schedule algorithms is 128-bit.

AES, MARS, Serpent and TwoFish used linear and non-

linear functions in key schedule whereas RC6 uses constants

and linear functions in key schedule. The cipher IDEA uses

only cyclic shift of secret key to generate the sub-keys. Each

key schedule algorithm is tested for the independency and

correlation property among sub-keys by applying above

mentioned four tests.

4. TEST PARAMETERS
For each key schedule algorithm Fks, 11(r = 11) sub-keys are

generated for testing. For IDEA, only seven (r = 7) sub-keys

are generated since IDEA uses 8 sub keys including secret

key in the encryption algorithm. For each key schedule

algorithm m, length of sub-key is taken as 128-bit. Sequence

length of AES, MARS, Serpent, RC6 and TwoFish key

schedule algorithms generated by the sub-key method, byte

level method and bit level method, are 7040 bit, 112640 bit

and 901120 bit respectively. For IDEA, these sequences

length are 2688 bit, 43008 bit and 344064 bit.

500 sequences are generated by each of the three methods. To

generate 500 sequences a random set of 500 secret keys is

generated from the pseudo random number generator BBS.

Testing process can also be extended for the non-random

keys to test sub keys randomness.

To test the null hypothesis of randomness, level of

significance α is chosen as 0.10. Other values of α can also be

chosen depending upon how much dependency and

correlation one can tolerate among the sub keys. α = 0.10

indicates that one would expect 10 out of 100 sequences may

not pass the test this value of α. In this case, 50 out of 500

sequences may not pass the tests. The threshold value for

passing test will be 90%.

5. RESULTS AND DISCUSSION

In this research work, defined passing criteria for the

randomness testing of sequences are 90%. But as mentioned

in the section II that it is impossible to make all sub keys

independent hence the results near to 90% shall also be

considered satisfactory. If any key schedule algorithm shows

result far away from passing criteria of randomness testing, it

will be concluded that the key schedule algorithm is

vulnerable to key-dependent attacks.

500 sequences are generated in each method for the selected

key schedule algorithms of six ciphers. In the following

section the results are analyzed in detail.

5.1. Sub key Independent Method

Selected 500 random keys are entered as a secret key to the

key schedule algorithms. The sub keys are generated and the

sequences to test the independence between sub-keys are

generated. Four randomness tests are performed on the

generated sequences and the results are presented in Table 1.

The results of Frequency test for the key schedule of Serpent,

RC6 and TwoFish are above 90% which shows the balance

of zero and one in the generated sequence. Remaining three

test results of these key schedules also satisfy the defined

passing criteria. These results indicate that the sub keys

generated by the key schedule of Serpent, RC6 and TwoFish

are independent and uncorrelated at sub key level.

1638 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(3),1835-1639,2015

May-June

Table 1: Results by Sub-Key Independent Method

Cipher
Frequency

Test
Runs Test

Poker

Test

Auto-

correlation

test

AES-128 76.6% 92.40% 99.6% 90.6%

MARS 48.4% 78% 98% 86%

Serpent 95.4% 97% 100% 94.2%

RC6 93.8% 92.4% 100% 92.8%

TwoFish 96.2% 98.6% 100% 94.8%

IDEA 45% 100% 97.4% 43.2%

Frequency test percentage of AES key schedule is 76.6%

which is far away from the passing criteria and point out the

unbalance distribution of zero and one in the sequence. Other

three test results for the AES fall into the passing range but

since frequency test is failed hence it is concluded that the

sub keys of AES are correlated. The result of frequency tests

for key schedule algorithm of IDEA is 45% which showed

the unbalanceness of zero and one in the sequences.

Autocorrelation test result of IDEA is 43.2% which

demonstrate the correlation between the sequences and their

shifted versions. key schedule of IDEA passes the runs and

poker test with high percentage since frequency and

autocorrelation tests do not fall into the passing range,

therefore, it is indicated that key schedule of IDEA does not

pass the independence criteria. MARS key schedule

algorithm also does not pass the frequency and runs tests. It

indicates the dependency and correlation among the

generated sub keys of MARS. The results showed that the

TwoFish key schedule algorithm is best among the 6 key

schedule algorithms.

5.2. Byte level Independence Method
Sub-keys are generated by inputting the 500 random keys

into the key schedule algorithms. To test the independence

between sub-keys at byte level, the sequences are generated

by the byte level independence method described in section

II. The statistical tests are performed on the generated

sequences to test the randomness. The results are given in

Table 2.

Table 2: Results by Byte Level Independent Method

Cipher
Frequency

Test

Runs

Test

Poker

Test

Auto-

correlation

test

AES-128 90.6% 95.20% 98% 90.6%

MARS 74% 85.60% 98% 74%

Serpent 95% 98.40% 99.8% 95%

RC6 97% 97.8% 100% 97%

TwoFish 97.6% 98.2% 100% 97.6%

IDEA 0% - - 0%

AES, Serpent, RC6 and TwoFish key schedules results

showed that percentage of passed sequences for all tests is

above 90%. This high percentage indicates that the bytes of

sub-keys generated by the AES, Serpent, RC6 and TwoFish

key schedule algorithms are statistically independent and

uncorrelated. The result of key schedule algorithm of MARS

described that it passes frequency test with percentage of 74.

The 74% indicate that distribution of zero and one is not

uniform. Other three test results of MARS key schedule

algorithm are 85.60%, 98% and 89.9% that are near or above

the 90%. However, MARS do not pass the frequency test,

hence, bytes of sub keys are somewhat correlated. Since key

schedule algorithm of IDEA uses only the permutation

function it showed the poor results for the frequency test.

Since frequency test showed 0% results therefore there is no

need to apply the other tests of randomness. Results of IDEA

show the strong correlation between the bytes of the sub-

keys.

5.3. Bit level Independence Method
To test the independence between the sub-keys at bit level,

data is generated by using the 500 random keys. This method

is stronger than the remaining two methods since it checks

the correlation between sub keys at bit level. Each bit of the

sub keys is tested for the correlation with the all bits of other

sub keys. If any key schedule algorithm passes the bit level

correlation test then the key schedule is suppose to be

immune to the key-dependent attacks. This method clearly

distinguishes between the weak and strong key schedule

algorithm. The test results for this method are given in Table

3.

TwoFish key schedule algorithm showed good results as

compared to the rest of the algorithms. TwoFish passed all

the randomness tests with high percentage. TwoFish uses

strong components (MDS and s-box) in the key schedule

algorithm which make it a strong key schedule algorithm.

AES key schedule also showed good independency among

sub keys at bit level. Only autocorrelation test percentage is

88.4%, however it is very close to 90%. It can be concluded

that the sub keys of AES are satisfactorily statistically

independent. Serpent key schedule algorithm also generates

the independent sub keys as indicated by the results.

Table 3: Results by bit level independence Method

Cipher
Frequency

Test

Runs

Test

Poker

Test

Auto-

correlation

test

AES-128 90.25% 92% 95.8% 88.4%

MARS 83% 87% 97% 91.2%

Serpent 95.6% 90.6% 100% 94.2%

RC6 77.4% 83% 91.8% 97.2%

TwoFish 93% 95.60% 99.6% 93.6%

IDEA 0% - - -

Frequency test of MARS key schedule algorithm is 83% and

87% for the runs test. But the poker and autocorrelation test

of MARS satisfied the threshold level. 83% frequency test of

MARS demonstrates that there is some dependency between

the sub keys. RC6 key schedule algorithm also did not pass

the frequency and run test which described the dependency at

bit level among generated sub keys. IDEA key schedule

algorithm showed 0% results for frequency test which

indicate that all 500 sequences did not pass the randomness

tests. The poor results of IDEA for all tests indicate high

dependency of sub keys at bit level.

6. CONCLUSION

Key schedule algorithm is an important part of any block

cipher algorithm and its strength directly affects the security

of the cipher. In literature, there are no defined criteria to test

the strength of key schedule algorithm. In this paper, three

different data generation methods are described to test the

independence and relationship among the sub keys generated

Sci.Int.(Lahore),27(3),1835-1839,2015 ISSN 1013-5316; CODEN: SINTE 8 1639

May-June

by the key schedule algorithm. Method 1 checks the

dependency between sub keys at the whole sub key level.

Method 2 checks the correlation between the bytes of sub

keys and Method 3 reveals the correlation among the bits of

sub keys. A weak key schedule algorithm may pass the first

method but second and third method pointed out all the

weaknesses of the key schedule algorithm. Frequency, runs,

poker and autocorrelation tests are used to test the

randomness of the generated sequences. The results have

shown that the key schedule algorithms which use only linear

permutation do not pass the statistical tests e.g. IDEA. During

design stage these test must also be performed to test the

dependence and correlation between sub-keys so that many

attacks can be mitigated which take the advantage of

dependency or linear relationship between sub-keys and

break the whole cipher.

REFERENCES

 [1] J.N.B. Salameh ,A New Technique for Sub-Key

Generation in Block Ciphers, World Applied Sciences

Journal 19.11 (2012) 1630-1639, DOI:

10.5829/idosi.wasj.2012.19.11.1871.

[2] U. Blumenthal, M. Bellovin ,A Better Key Schedule For

DES-LIKE Ciphers, Proceedings of Pragocrypt 1996.

[3] wikipedia, Key schedule,

http://en.wikipedia.org/wiki/Key_schedule , (5 May

2014).

[4] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M.

Dworkin, Report on the development of the Advanced

Encryption Standard (AES), NIST, ADA396556,

http://csrc.nist.gov/archive/aes/round2/r2report.pdf

(2000).

[5] R. Anderson, E. Biham, L. Knudsen, Serpent: A proposal

for the advanced encryption standard, NIST AES

Proposal 174 (1998).

[6] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, Twofish:

A 128-bit block cipher, NIST AES Proposal 15 (1998).

[7] C. Burwick, D. Coppersmith, E.D. Avignon, MARS-a

candidate cipher for AES, NIST AES Proposal 268

(1998).

[8] R.L. Rivest, M. J. B. Robshaw, R. Sidney, The RC6TM

block cipher, First Advanced Encryption Standard

(AES) Conference. (1998).

[9] J. Daemen, R. Govaerts, J. Vandewalle, Weak keys for

IDEA, In Advances in Cryptology—Crypto’93 (pp.

224-231), Springer Berlin Heidelberg, (1994) DOI:

10.1007/3-540-48329-2_20.

[10] Z.Wenzheng & Y. Cao ,Randomness test of key

schedule algorithm ,2006.

[11] U.M. Maurer,A universal statistical test for random bit

generators, Journal of cryptology 5.2 (1992) 89-105.

[12] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, A

statistical test suite for random and pseudorandom

number generators for cryptographic applications,

BOOZ-ALLEN AND HAMILTON INC MCLEAN

VA, (2001).

[13] C. Loredana et al, Randomness Evaluation Framework

of Cryptographic Algorithms, International Journal on

Cryptography and Information Security (IJCIS), Vol. 4,

No. 1, (March 2014).

http://en.wikipedia.org/wiki/Key_schedule
http://csrc.nist.gov/archive/aes/round2/r2report.pdf
http://scholar.google.com.pk/citations?user=WgyDcoUAAAAJ&hl=en&oi=sra
http://scholar.google.com.pk/citations?user=YayQtGUAAAAJ&hl=en&oi=sra
http://scholar.google.com.pk/citations?user=EjXmTH4AAAAJ&hl=en&oi=sra
http://scholar.google.com.pk/citations?user=67kghxAAAAAJ&hl=en&oi=sra
http://scholar.google.com.pk/citations?user=6qE0tdAAAAAJ&hl=en&oi=sra
http://scholar.google.com.pk/citations?user=VLft_T4AAAAJ&hl=en&oi=sra
http://scholar.google.com.pk/citations?user=onY4i0oAAAAJ&hl=en&oi=sra
http://scholar.google.com.pk/citations?user=Swa4FrsAAAAJ&hl=en&oi=sra
http://scholar.google.com.pk/citations?user=4RUs09AAAAAJ&hl=en&oi=sra

